EfficientNet4Lite

object EfficientNet4Lite : ONNXModels.CV

Image classification model based on EfficientNet-Lite architecture. Trained on ImageNet 1k dataset. (labels are available via org.jetbrains.kotlinx.dl.impl.dataset.Imagenet.labels method).

EfficientNet-Lite 4 is the largest variant and most accurate of the set of EfficientNet-Lite model. It is an integer-only quantized model that produces the highest accuracy of all the EfficientNet models. It achieves 80.4% ImageNet top-1 accuracy, while still running in real-time (e.g. 30ms/image) on a Pixel 4 CPU.

The model have

  • an input with the shape (1x224x224x3)

  • an output with the shape (1x1000)

See also

Functions

model
Link copied to clipboard
open fun model(modelHub: ModelHub): OnnxInferenceModel
pretrainedModel
Link copied to clipboard
open override fun pretrainedModel(modelHub: ModelHub): ImageRecognitionModel

Properties

inputShape
Link copied to clipboard
open val inputShape: LongArray?

Shape of the input accepted by this model, without batch size.

modelRelativePath
Link copied to clipboard
open override val modelRelativePath: String
preprocessor
Link copied to clipboard
open override val preprocessor: Operation<Pair<FloatArray, TensorShape>, Pair<FloatArray, TensorShape>>